LARUELLE AND A « COMMON =X » AS POINT OF (IN)SUFFICIENCY (2): incommensurability traversed by paradoxical object

Further comments on « From Non-Standard Philosophy to « Absolute Nothingness »: Is There a Common = X » (pdf, video) by Anne-Françoise Schmid:

The project by Anne-Françoise Schmid of inventing a non-given « common = x » is a promissory note based on a generic balance-sheet (implicit anamnesis) of recent French post-structuralist philosophy and of François Laruelle’s philosophical evolution (explicit anamnesis) in relation to a thought-workshop experience.

The seed-concept of a « common=x » the inchoative image of thought not just of the common origin and shared structure of disciplines but of the free and open movement between them. This image of thought concords with, and in fact derives from, similar images of thought in the work of Serres, Deleuze, Derrida, Lyotard, Badiou, Latour, etc.

One could translate the question in the title of the talk (« Is there a common = x? ») as: « given the incommensurabilities of systems is there a commensurabilising X capable of operating a possible meta-re-commensurabilisation of heterogeneous systems? »

The problem is that of how to move freely, and so how to have an open dialogue and other forms of free exchange, between semantically incommensurable frameworks. This movement means that there is a pragmatic dimension where these diverse incommensurable frameworks are permeable to each other, even if in the semantic dimension they are disjoint, or divergent.

The proposed solution of a « common=x » generates a new problem: this « x » would itself have to be described in divergent sets of terms relative to each system. On the mystical analogy the common is an apophatic « x », not even a determinate or univocal object.

One hypothesis for exploring this paradoxical object-that-is-not-an-object (« common = x ») would be to re-read Deleuze’s analyses of such objects in his LOGIC OF SENSE.

Cet article a été publié dans Uncategorized. Ajoutez ce permalien à vos favoris.

Un commentaire pour LARUELLE AND A « COMMON =X » AS POINT OF (IN)SUFFICIENCY (2): incommensurability traversed by paradoxical object

Votre commentaire

Entrez vos coordonnées ci-dessous ou cliquez sur une icône pour vous connecter:


Vous commentez à l’aide de votre compte Déconnexion /  Changer )

Photo Google

Vous commentez à l’aide de votre compte Google. Déconnexion /  Changer )

Image Twitter

Vous commentez à l’aide de votre compte Twitter. Déconnexion /  Changer )

Photo Facebook

Vous commentez à l’aide de votre compte Facebook. Déconnexion /  Changer )

Connexion à %s